Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
نویسندگان
چکیده
We report facile in situ biomolecule assembly at readily addressable sites in microfluidic channels after complete fabrication and packaging of the microfluidic device. Aminopolysaccharide chitosan's pH responsive and chemically reactive properties allow electric signal-guided biomolecule assembly onto conductive inorganic surfaces from the aqueous environment, preserving the activity of the biomolecules. A transparent and nonpermanently packaged device allows consistently leak-free sealing, simple in situ and ex situ examination of the assembly procedures, fluidic input/outputs for transport of aqueous solutions, and electrical ports to guide the assembly onto the patterned gold electrode sites within the channel. Both in situ fluorescence and ex situ profilometer results confirm chitosan-mediated in situ biomolecule assembly, demonstrating a simple approach to direct the assembly of biological components into a completely fabricated device. We believe that this strategy holds significant potential as a simple and generic biomolecule assembly approach for future applications in complex biomolecular or biosensing analyses as well as in sophisticated microfluidic networks as anticipated for future lab-on-a-chip devices.
منابع مشابه
Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device.
We report a biofunctionalization strategy for the assembly of catalytically active enzymes within a completely packaged bioMEMS device, through the programmed generation of electrical signals at spatially and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase (Pfs), is genetically fused with a pentatyrosine "pro-tag" at its C-terminus. Sig...
متن کاملProtein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.
We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic act...
متن کاملIn situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
We report the in situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. The pH-stimuli-responsive polysaccharide chitosan was enlisted to form a freestanding hydrophilic membrane structure in microfluidic networks where pH gradients are generated at the converging interface between a slightly acidic chitosan solution and a ...
متن کاملA new approach to in-situ "micromanufacturing": microfluidic fabrication of magnetic and fluorescent chains using chitosan microparticles as building blocks.
An in situ microfluidic assembly approach is described that can both produce microsized building blocks and assemble them into complex multiparticle configurations in the same microfluidic device. The building blocks are microparticles of the biopolymer chitosan, which is intentionally selected because its chemistry allows for simultaneous intraparticle and interparticle linking. Monodisperse c...
متن کاملAssembly of Quorum Sensing Pathway Enzymes onto Patterned Microfabricated Devices
Title of Dissertation: ASSEMBLY OF QUORUM SENSING PATHWAY ENZYMES ONTO PATTERNED MICROFABRICATED DEVICES Angela T. Lewandowski, Doctor of Philosophy, 2007 Directed By: Professor William E. Bentley, Department of Chemical and Biomolecular Engineering I report patterned protein assembly onto microfabricated devices using our unique assembly approach. This approach is based on electrodeposition of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2006